The Stress State of a Thick-Walled Hydraulic Press Cylinder with Concentrators

نویسندگان

چکیده

The article deals with modeling and calculations of volumetric machine-building structures complex geometry. relevance the work lies in fact that its methodology results can help design massive structural elements shape, including cylinders powerful hydraulic presses. Attention is paid to problems reducing metal content products safe conditions their operation. Theoretical applied based on numerical methods using analytical solutions assess reliability computer calculation results. choice research method because for parts such a configuration are too implementation. Experimental expensive not so universal as sort out possible variants shapes sizes. For actual model press, capabilities finite element implemented ANSYS multipurpose were selected rationally used. summarized table shown graphs stress distribution. Based performed (with check formulas theory elasticity simplified schemes), conclusions made ensure more even distribution stresses reduction product.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stress Redistribution Analysis of Piezomagnetic Rotating Thick-Walled Cylinder with Temperature-and Moisture-Dependent Material Properties

In this article, the problem of time-dependent stress redistribution of a piezomagnetic rotating thick-walled cylinder under an axisymmetric hygro-thermo-magneto-electro-mechanical loading is analyzed analytically for the condition of plane strain. Using the constitutive equations, a differential equation is found in which there are creep strains. Primarily, eliminating creep strains, an analyt...

متن کامل

Thermo-elastic behavior of a thick-walled composite cylinder reinforced with functionally graded SWCNTs

In this article, thermo-elastic-behavior of a thick-walled cylinder made from a polystyrene nanocomposite reinforced with functionally graded (FG) single-walled carbon nanotubes (SWCNTs) was carried out in radial direction while subjected to a steady state thermal field. The SWCNTs were assumed aligned, straight with infinite length and a uniform layout. Two types of variations in the volume fr...

متن کامل

Design and analysis of Stress on Thick Walled Cylinder with and with out Holes

The conventional elastic analysis of thick walled cylinders to final radial & hoop stresses is applicable for the internal pressures up to yield strength of material. The stress is directly proportional to strain up to yield point Beyond elastic point, particularly in thick walled cylinders. The operating pressures are reduced or the material properties are strengthened. There is no such existi...

متن کامل

Mathematical Modeling of Thermoelastic State of a Thick Hollow Cylinder with Nonhomogeneous Material Properties

The object of the present paper is to study heat conduction and thermal stresses in a hollow cylinder with nonhomogeneous material properties. The cylinder is subjected to sectional heating at the curved surface. All the material properties except for Poisson’s ratio and density are assumed to be given by a simple power law in the axial direction. A solution of the two-dimensional heat conducti...

متن کامل

Estimation of Thermoelastic State of a Thermally Sensitive Functionally Graded Thick Hollow Cylinder: A Mathematical Model

The object of the present paper is to study temperature distribution and thermal stresses of a functionally graded thick hollow cylinder with temperature dependent material properties. All the material properties except Poisson’s ratio are assumed to be dependent on temperature. The nonlinear heat conduction with temperature dependent thermal conductivity and specific heat capacity is reduced t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ?????? ?????????? ????

سال: 2023

ISSN: ['0042-1294', '1996-6652']

DOI: https://doi.org/10.21272/jes.2023.10(1).d3